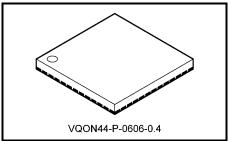
TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB2173FTG

2-Source Stereo Headphone Amplifier

The TB2173FTG is a stereo headphone amplifier IC that can accept two sources, developed for portable audio systems.

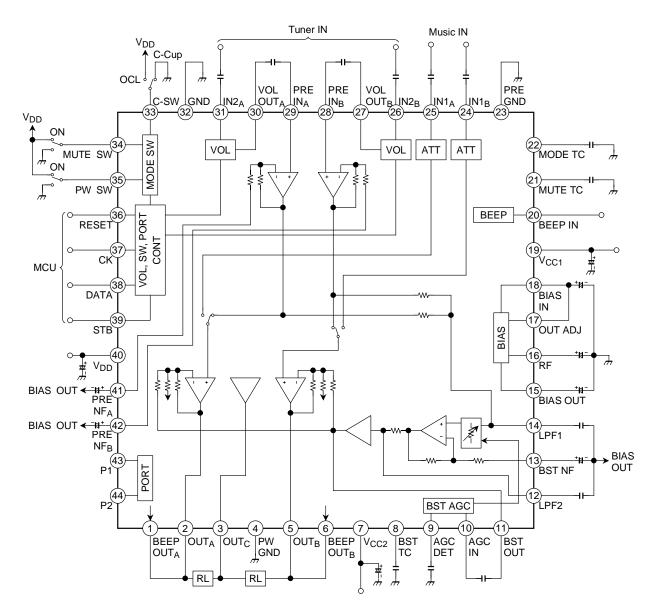
It is particularly ideal for digital portable audio systems having built-in tuners.


Features

- Accepts headphone amplifier inputs from two sources
- Selectable headphone amplifier output: Output coupling or OCL
- Incorporates beep circuit
- Incorporates power switch (controlled using port or command)
- Supports power muting (controlled using port or command)
- Features with single source only (tuner mode):
 - Electronic volume
 - Provides logic reset feature
 - Low-frequency boost (with AGC)
- Two port expansion circuits
- Operating supply voltage range: Ta = 25°C

VDD (opr) = 1.8 to 4.5 V VCC1 (opr) = 1.8 to 4.5 V VCC2 (opr) = 0.9 to 4.5 V

Note: Use the device with V_{CC1} greater than or equal to V_{CC2} .


- Handle the product with great care because its surge resistance is low.
- Ensure that the product is mounted correctly. Otherwise, the product or connected equipment may get damaged or degrade.

Weight: 0.05 g (typ.)

Product indication: B2173G

Block Diagram (OCL Type)

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purpose.

Pin Functions

Pin voltages: Typical quiescent pin voltages in test circuit, $V_{DD} = V_{CC1} = 2.1$ V, $V_{CC2} = 1.2$ V, Ta = 25°C

The equivalent circuit diagrams are intended as an aid for describing circuits; they may be shown in abbreviated or simplified format.

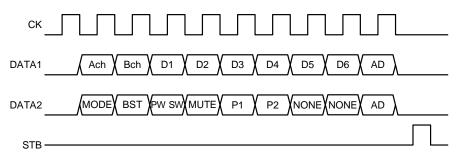
a	Pin No. nd Name	Function	Internal Equivalent Circuit	Pin Voltage (V)
1	BEEP OUT _A BEEP	Beep signal output		_
6	OUTB			
20	BEEP IN	Beep signal input		_
2	OUTA	Power amplifier output	PWA The second s	0.6
5	OUTB		$ \begin{array}{c} $	
4	PW GND	Power drive stage ground	BST2 BST2 11 11	0
7	Vcc2	Power drive stage V _{CC}	$10 \text{ k}\Omega$ $10 \text{ k}\Omega$ $30 \text{ k}\Omega$ $10 \text{ k}\Omega$	1.2
11	BST OUT	Boost amplifier output	PWB 5	0.6

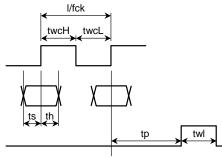
	Pin No. nd Name	Function	Internal Equivalent Circuit	Pin Voltage (V)
3	out _c	Center amplifier output		0.6
33	C-SW	Output application select switch (V _{DD} : OCL GND : Output coupling	BIAS OUT OUT PW GND	0.6
8	BST TC	Pin for reducing boost ON/OFF pop noise	BST SW	_
9	AGC DET	Boost AGC detection		
10	AGC IN	Boost AGC input The level of the input signal to the BST amplifier is varied according to the input level at this pin. Input impedance: 37 kΩ (typ.)		0.6

	Pin No. nd Name	Function	Internal Equivalent Circuit	Pin Voltage (V)
12	LPF2	Boost filter pin 2 Cutoff frequency setting 2 for low-frequency boost	BIAS OUT	0.6
13	BST NF	Boost amplifier NF	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	0.6
14	LPF1	Boost filter pin 1 Cutoff frequency setting 1 for low-frequency boost	$50 \text{ k}\Omega \\ \longrightarrow \text{ BIAS OUT} \\ 500 \Omega \\ 100 \Omega \\$	0.6
28	PRE IN _B	Tuner mode:		0.6
29	PRE IN _A	Power amplifier input	$\begin{array}{c} G \\ (41) \\ 50 \\ K\Omega \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0.0
41	PRE NF _A	Tuner mode:		
42	PRE NF _B	Power amplifier NF	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.6

	Pin No. nd Name	Function	Internal Equivalent Circuit	Pin Voltage (V)
15	BIAS OUT	Bias circuit output	V _{CC2}	0.6
16	RF	Ripple filter pin	30 kg	1.1
17	OUT ADJ	Output DC voltage adjustment The output bias voltage is set to an optimum value according to the voltage applied to V_{CC2} .		0.6
18	BIAS IN	Bias circuit input		0.6
19	V _{CC1}	V_{CC} other 2 than V_{DD} and V_{CC2}		2.1
21	MUTE TC	Mute smoothing		_
34	MUTE SW	Power mute switch Mute switch for power amplifier. When controlling MUTE SW using a port, specify "0" in a command. In that case, the IC operates as follows according to the port state: (High: Mute ON Low: Mute OFF When controlling MUTE SW using a command, drive the port low.	50 kΩ 50 kΩ 21 50 kΩ 21 7 7 7 7 7 7 7 7 7 7 7 7 7	_
22	MODE TC	Pin for reducing mode change pop noise		_
23	PRE GND	Ground for circuits other than logic and power drive stage	—	0

	Pin No. nd Name	Function	Internal Equivalent Circuit	Pin Voltage (V)
24	IN _{1B}	Input pin 1		0.6
25	IN _{1A}	Input pin with $G_V = 8dB$	BIAS OUT BIAS OUT	
26	IN _{2B}	Input pin 2 The input signal is supplied to the power amplifier through		0
31	IN _{2A}	the electronic volume circuit and preamplifier.		
27	VOL OUT _B	Volume output		0
30	30 VOL OUT _A	IN ₂ electronic volume output		
32	GND	Logic ground		0
35	PW SW	Power switch IC ON/OFF switch. The switch does not, however, control the electronic volume circuit. When controlling PW SW using a port, specify "1" in a command. In that case, the IC operates as follows according to the port state: (High: IC ON Low: IC OFF When controlling PW SW using a command, drive the port high.	2 kΩ 35 w to BUS	_
36	RESET	Command reset This pin resets the bus data. (High: No reset Low: Reset		2.1
40	V _{DD}	Logic power supply		2.1


а	Pin No. nd Name	Function	Internal Equivalent Circuit	Pin Voltage (V)
37	ск	Clock input		_
38	DATA	Data input		—
39	STB	Strobe input		—
43	P1	Port expansion		
44	P2			


Functional Description

Bus Data

Timing Charts

1. Serial Data Specification (initial data is not set.)

Characteristics	Symbol	Min	Тур.	Max	Unit
Clock frequency	fck	_	_	1.0	MHz
High-level pulse width	twcH	500	_	_	nSec
Low-level pulse width	twcL	500	_	_	nSec
Data setup time	ts	100	_	_	nSec
Data hold time	th	100	_	_	nSec
STB setup time	tp	150	_	_	nSec
STB pulse width	twl1	0.80			μSec

(1) Ach/Bch control data: 2 bits (Ach, Bch)

Ach	Bch	Operation
0	0	No volume data set
1	0	Volume data set for Ach only
0	1	Volume data set for Bch only
1	1	Volume data sets for both channels

(2) Volume data: 6 bits (D1 to D6)

Volur	ne Value	D1	D2	D3	D4	D5	D6	Volur	ne Value	D1	D2	D3	D4	D5	D6
1	-0.1dB	0	0	0	0	0	0	33	-34.3	0	0	0	0	0	1
2	-2.1	1	0	0	0	0	0	34	-34.7	1	0	0	0	0	1
3	-4.0	0	1	0	0	0	0	35	-35.1	0	1	0	0	0	1
4	-5.5	1	1	0	0	0	0	36	-35.5	1	1	0	0	0	1
5	-6.9	0	0	1	0	0	0	37	-36.0	0	0	1	0	0	1
6	-8.2	1	0	1	0	0	0	38	-36.5	1	0	1	0	0	1
7	-9.6	0	1	1	0	0	0	39	-37.0	0	1	1	0	0	1
8	-10.9	1	1	1	0	0	0	40	-37.6	1	1	1	0	0	1
9	-12.3	0	0	0	1	0	0	41	-38.2	0	0	0	1	0	1
10	-13.6	1	0	0	1	0	0	42	-38.9	1	0	0	1	0	1
11	-14.9	0	1	0	1	0	0	43	-39.6	0	1	0	1	0	1
12	-16.3	1	1	0	1	0	0	44	-40.4	1	1	0	1	0	1
13	-17.6	0	0	1	1	0	0	45	-41.5	0	0	1	1	0	1
14	-19.0	1	0	1	1	0	0	46	-42.7	1	0	1	1	0	1
15	-20.3	0	1	1	1	0	0	47	-43.3	0	1	1	1	0	1
16	-22.1	1	1	1	1	0	0	48	-43.9	1	1	1	1	0	1
17	-23.7	0	0	0	0	1	0	49	-44.7	0	0	0	0	1	1
18	-25.1	1	0	0	0	1	0	50	-45.3	1	0	0	0	1	1
19	-26.6	0	1	0	0	1	0	51	-46.1	0	1	0	0	1	1
20	-27.9	1	1	0	0	1	0	52	-46.9	1	1	0	0	1	1
21	-28.5	0	0	1	0	1	0	53	-47.7	0	0	1	0	1	1
22	-29.1	1	0	1	0	1	0	54	-48.7	1	0	1	0	1	1
23	-29.3	0	1	1	0	1	0	55	-49.9	0	1	1	0	1	1
24	-29.8	1	1	1	0	1	0	56	-51.1	1	1	1	0	1	1
25	-30.5	0	0	0	1	1	0	57	-52.5	0	0	0	1	1	1
26	-30.8	1	0	0	1	1	0	58	-54.4	1	0	0	1	1	1
27	-31.3	0	1	0	1	1	0	59	-56.1	0	1	0	1	1	1
28	-31.7	1	1	0	1	1	0	60	-57.8	1	1	0	1	1	1
29	-32.2	0	0	1	1	1	0	61	-60.0	0	0	1	1	1	1
30	-32.8	1	0	1	1	1	0	62	-63.5	1	0	1	1	1	1
31	-33.2	0	1	1	1	1	0	63	-68.9	0	1	1	1	1	1
32	-33.9	1	1	1	1	1	0	64	-90.0	1	1	1	1	1	1

(3) Identification data: 1 bit (AD)

AD	Operation
0	Recognized as DATA1
1	Recognized as DATA2

(4) MODE SW data: 1 bit (MODE)

MODE	Operation
0	Outputs the input signal components for IN2 (tuner mode).
1	Outputs the input signal components for IN1 (music mode).

(5) BST SW data: 1 bit (BST)

BST	Operation
0	Boost OFF
1	Boost ON

(6) PW SW: 1 bit (PW SW)

PW SW can be controlled using either a command or port, with the following truth table:

Port	Command	Operation					
0 (OFF)	0 (OFF)	0 (IC OFF)					
0 (OFF)	1 (ON)	0 (IC OFF)					
1 (ON)	0 (OFF)	0 (IC OFF)					
1 (ON)	1 (ON)	1 (IC ON)					

(7) MUTE SW: 1 bit (MUTE)

MUTE SW can be controlled using either a command or port, with the following truth table:

Port	Command	Operation
0 (OFF)	0 (OFF)	0 (MUTE OFF)
0 (OFF)	1 (ON)	1 (MUTE ON)
1 (ON)	0 (OFF)	1 (MUTE ON)
1 (ON)	1 (ON)	1 (MUTE ON)

(8) Power expansion: 1 bit (P1/P2)

P1/P2	Operation
0	Port Low
1	Port High

(9) NONE An invalid bit

(10) Strobe data (STB)

STB	Operation
0	No data write
1	Data write

(11) Initial command upon command reset

DATA1	Ach	Bch	D1	D2	D3	D4	D5	D6	AD
Initial value	1	1	1	1	1	1	1	1	0
DATA2	MODE	BST	PW SW	MUTE	P1	P2	Invalid	Invalid	AD
Initial value	0	0	0	1	1	0			

Bit 9 specifies the address.

The initial address selected upon a reset is DATA1.

Command data is maintained over a power cycle.

2. IC Settings According to Supply Voltage

(1) Connecting power supplies

The TB2173FTG supports an end product that uses either one or two batteries. Connect the power supply pins according to the number of batteries, as follows:

	Microcontroller power supply	Battery power supply		
Single battery	V _{DD} , V _{CC1}	V _{CC2}		
Two batteries	V _{DD}	V _{CC1} , V _{CC2}		

Note: Use the device with V_{CC1} greater than or equal to V_{CC2} .

(2) Handling the OUT ADJ pin (pin 17)

When using a single battery: Jumper OUT ADJ (pin 17) and BIAS IN (pin 18). When using two batteries: Leave OUT ADJ (pin 17) open.

Absolute Maximum Ratings (Ta = 25°C)

Characteristics	s	Symbol	Rating	Unit		
DC supply voltage	V _{DD}		5.0	V		
DC supply voltage		V _{CC}	0.0	v		
Operating supply voltage		V _{DD}	4.5	V		
		V _{CC}	4.5	v		
Power block output current		I _O	100	mA		
Power dissipation	PD	(Note 1)	350	mW		
Power dissipation		(Note 2)	1200	IIIVV		
Operating temperature	T _{opr}		-25 to 75	°C		
Storage temperature	T _{stg}		T _{stg}		-55 to 150	°C

Note 1: IC alone: When the IC is used at 25°C or higher, reduce 2.8 mW per 1°C.

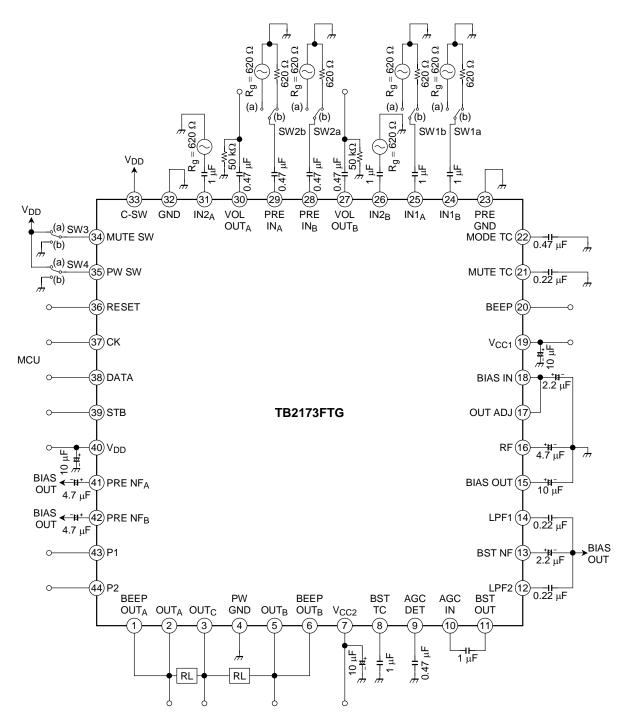
Note 2: When mounted on Toshiba standard board: When the IC is used at 25°C or higher, reduce 9.6 mW per 1°C.

The absolute maximum ratings of a semiconductor device are a set of specified parameter values which must not be exceeded during operation, even for an instant.

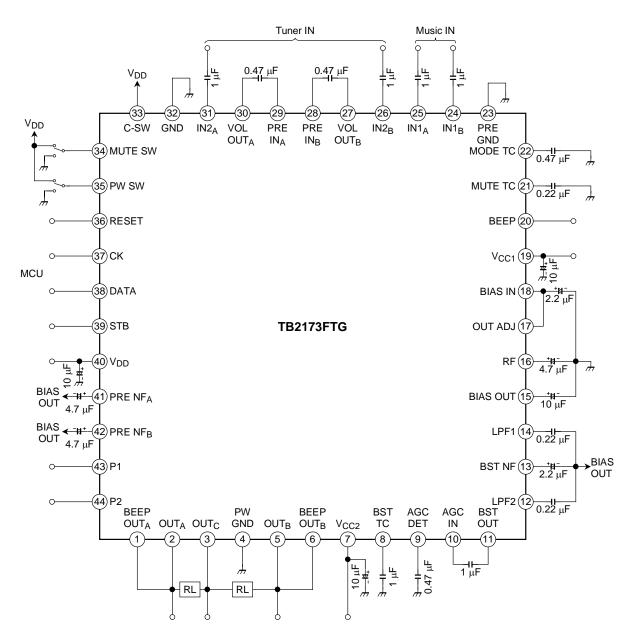
Exposure to conditions beyond those listed above may cause permanent damage to the device or affect device reliability, which could increase potential risks of personal injury due to IC blowup and/or burning.

The equipment manufacturer should design so that no absolute maximum rating value is exceeded with respect to current, voltage, power dissipation, temperature, etc.

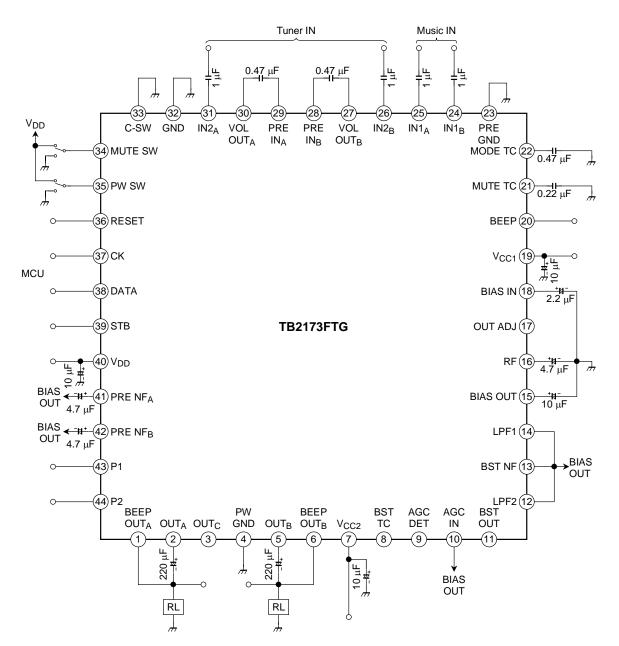
Ensuring that the parameter values remain within these specified ranges during device operation will help to ensure that the integrity of the device is not compromised.


Electrical Characteristics

Tuner modeInput: INT, Output: OOT, OWT: aTuner modeInput: PRE IN, Output: OUT, SW2: aElectronic volumeInput: IN2, Output: VOL OUT


Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
		I _{CCQ1}	Standby (V _{DD}), SW4: b	—		5	μΑ
		I _{CCQ2}	Standby (V _{CC1} , V _{CC2})	—	—	5	μΑ
		I _{CCQ3}	Mute ON: Music mode (V _{CC1}), SW3 : a	—	0.6	1.0	mA
		I _{CCQ4}	Mute ON: Music mode (V _{CC2}), SW3 : a		0.3	0.6	mA
Qui	escent current	I _{CCQ5}	Mute ON: Music mode (V _{CC1}), SW3 : a		0.6	1.0	mA
		I _{CCQ6}	Mute ON: Music mode (V _{CC2}), SW3 : a		0.3	0.6	mA
		I _{CCQ7}	No signal: Music mode (V _{CC1})	_	0.9	1.4	mA
		I _{CCQ8}	No signal: Music mode (V _{CC2})		0.7	1.4	mA
		I _{CCQ9}	No signal: Music mode (V _{CC1})	—	0.9	1.4	mA
		I _{CCQ10}	No signal: Music mode (V _{CC2})	—	0.8	1.6	mA
Driv	ring current	I _{CCD1}	0.1 mW*2ch/16 Ω (V _{CC1})	_	1.0		mA
Diri	ing current	I _{CCD2}	0.1 mW*2ch/16 Ω (V _{CC2})	_	4.5	_	mA
	Voltage gain	G _{V1}	$V_0 = -20 dBV$	6.5	8	9.5	dB
	Channel balance	CB1	$V_0 = -20 dBV$	-1.5	0	+1.5	dB
	Output power	P _{o1}	THD = 10%	7	9.5	_	mW
e	Total harmonics distortion	THD1	P _o = 1 mW	_	0.2	0.5	%
pom	Output noise voltage	V _{no1}	R _g = 600 Ω, IHF-A, SW1: b	—	-98	-92	dBV
Music mode	Interchannel crosstalk	CT1	$V_0 = -20 dBV$	-32	-38	—	dB
Σ	Intermode crosstalk	CT2	$V_0 = -20$ dBV, monitor: music	-45	-51	_	dB
	Ripple rejection ratio	RR1	$f_r = 100Hz$, $V_r = -20dBV$, injected to V_{CC1}	-70	-85	_	dB
		RR2	f_r = 100Hz, V_r = –20dBV, injected to V_{CC2}	-60	-75	_	dB
	Mute attenuation	ATT1	$V_0 = -20 dBV, SW3: b \rightarrow a$	-100	-120		dB
	Voltage gain	G _{V2}	$V_0 = -20 dBV$	22.5	24	25.5	dB
	Channel balance	CB2	$V_0 = -20 dBV$	-1.5	0	+1.5	dB
	Output power	P _{o2}	THD = 10%	7	9.5		mW
	Total harmonics distortion	THD2	$P_0 = 1 \text{ mW}$	—	0.2	0.5	%
	Output noise voltage	V _{no2}	R _g = 600 Ω, IHF-A, SW2 : b	—	-90	-84	dBV
ode	Interchannel crosstalk	CT3	$V_0 = -20 dBV$	-27	-33	_	dB
er m	Intermode crosstalk	CT4	$V_0 = -20$ dBV, monitor: tuner	-39	-45		dB
Tuner mode	Dipple rejection ratio	RR3	$f_r = 100$ Hz, $V_r = -20$ dBV, injected to V_{CC1}	-58	-73	_	dB
	Ripple rejection ratio	RR4	$f_r = 100$ Hz, $V_r = -20$ dBV, injected to V_{CC2}	-43	-58	_	dB
	Mute attenuation	ATT2	$V_0 = -20 dBV$	-95	-115	—	dB
		BST1	$f = 100 \text{ Hz}, \text{ V}_0 = -20 \text{dBV}$	1.5	4.5	7.5	dB
	Boost	BST2	$f = 100 \text{ Hz}, V_0 = -30 \text{dBV}$	8.5	11.5	14.5	dB
		BST3	$f = 100 \text{ Hz}, \text{ V}_0 = -50 \text{dBV}$	9.5	12.5	15.5	dB

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
amu	Maximum input level		V _{im}	THD = 1%	250	320		mVrms
Electronic volume	Attenuation e	rror	Δ ATT	$V_0 = -10 dBV$	-3.0	0	+3.0	dB
ctroni	Channel bala	nce	CB3	$V_0 = -10 dBV$	-1.5	0	+1.5	dB
Elec	Maximum atte	enuation	ATT	$V_0 = -10 dBV$	-80	-90		dB
	Bus operating	g frequency	f _{opr}		_		1	MHz
	Input voltage	High level	V _{IH}	CK, DATA, STB, and RESET input pins	V _{DD} × 0.75		V _{DD}	V
Logic		Low level	V _{IL}	CK, DATA, STB, and RESET input pins	0		V _{DD} × 0.25	V
	Input leakage current		ILI	V _{IH} : V _{DD} , V _{IL} : 0 V	_	_	±1	μA
	Port expansion driving current		I _{OL}	V _{OL} : 0.3 V	1.0			mA
			I _{OH}	V _{OH} : V _{DD} -0.3 V	-1.0			mA
Bee	ep output level		VBEEP	SW3: a	-55	-50	-45	dBV
PW	PW SW pin ON voltage		V35 (ON)		V _{DD} × 0.8		V _{DD}	V
PW	PW SW pin OFF voltage		V35 (OFF)		0		$V_{DD} \times 0.2$	V
MU	MUTE SW pin ON voltage V34		V34(ON)		$V_{DD} \times 0.8$		V _{DD}	V
MU	MUTE SW pin OFF voltage		V34 (OFF)		0		V _{DD} × 0.2	V


Test Circuit Diagram

Example Application Circuit 1 (1.5-V OCL)

Example Application Circuit 2 (3-V output coupling, without low-frequency boost)

Package Dimensions

VQON44-P-0606-0.4

0.15SA 5.3 0.15SB 5.3 ×4 _0.15 S 0.6max ___0.05S $0.35_{-0.1}^{+0.15}$ В 12 22 0.35^{+0.15} 11 ²³ 59.0 A ٦ $0.3\substack{+0.15 \\ -0.1}$ 33 34 44 0.65 0.4

Weight: 0.05 g (typ.)

2006-04-19

Unit: mm

RESTRICTIONS ON PRODUCT USE

060116EBA

The information contained herein is subject to change without notice. 021023_D

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and

set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-37Pb solder Bath
 - solder bath temperature = 230°C
 - dipping time = 5 seconds
 - the number of times = once
 - use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - the number of times = once
 - use of R-type flux